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Hierarchical Bayes models for the progression
of HIV infection using longitudinal CD4÷ counts

Nicholas Lange Bradley P. Carlin Alan E. Gelfand"

Taking the absolute number of CD4+ cells (also known as T helper cells, T4 cells, and CD4 cells) as a
marker of disease progression for persons infected with the human immunodeficiency virus (HIV) we
model longitudinal series of such counts for a sample of 331 subjects in the San Francisco Men's Health
Study. We conduct a careful and fully Bayesian analysis of these data. We are able to employ individual
level nonlinear models incorporating critical features such as incomplete and unbalanced data, population
covariates, unobserved random change points, heterogeneous variances, and errors-in-variables. Using
results of previously published work from several different sources we construct rather precise prior
distributions. Our analysis provides marginal posterior distributions for all population parameters in our
model for this cohort. Using an inverse prediction approach we also develop the posterior distributions
of time for CD4+ count to reach a specified level.

KEY WORDS: AIDS, Gibbs sampler, growth curves, heterogeneity, inverse prediction, marginal
posterior distribution, prior specification, random change points, sexual preference.



1. Introduction

A tremendous amount of published work has appeared in the last few years on the measurement

of various clinical markers of disease and disease progression in persons infected with the human

immunodeficiency virus (HIV). Among the primary biological markers of interest is the number of

CD4+ cells per cubic millimeter of drawn blood (Fauci et al. 1984; Bowen et al. 1985; Eyster et al.

1985, among many others). These cells have also been called CD4 cells, T4 cells, and T helper cells in

the immunologic literature. This paper deals solely with this clinical marker. Although the need for a

full and detailed understanding of the behavior of CD4+ counts over time is obvious (and is motivated

in detail in the next section) little of this published work has set out to model the longitudinal processes

involved in an adequate manner. We feel that this lack is due primarily to the urgent initial clinical need

to establish useful critical values of this marker (for example < 500 cells/mm3, or < 200 cells/mm3)

but also to the statistical difficulties of modeling the process even when a longitudinal data set (i.e.

repeated CD4+ counts for the same individual over time) has been obtained.

In a recent paper, De Gruttola, Lange and Dafni (1990) addressed some of the statistical modeling

issues and offered results that help meet clinical needs. Our investigation goes further in meeting such

needs through the removal of somewhat restrictive and implausible modeling assumptions required to

implement classical frequentist and empirical Bayes techniques, while making more use of available

data and prior evidence. We are able to accommodate individual level nonlinear models incorporating

critical features such as incomplete and unbalanced data, population covariates, unobserved random

change points, heterogeneous variances, and errors-in-variables. We construct rather precise prior

distributions due to the availability of previously published work. We are able to obtain marginal

posterior distributions of interest using recent advances in the technology of Bayesian computations. In

total we provide clinically useful results based on a full and careful statistical analysis of a current data

set along with information gleaned from previously published analyses of relevant data.

The structure of this paper is as follows. The next section gives a brief review of the medical,

epidemiological and biostatistical literature on CD4+ counts and on our data set in particular. Section

3 gives detail on our high-dimensional model and on our prior specifications drawn from the sources

outlined in section 2. In section 3 we also define and propose a solution to an inverse prediction problem

in our context. The final sections 4 and 5 give results, conclusions and discussion.
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2. Background

The following is a brief but fairly complete synopsis of relevant published literature in the analysis

and clinical uses of CD4+ counts for HIV infected individuals, a motivation of the need for more

data-analytic results in this area and a description of the major new and necessary features of our

modeling approach.

Eyster et al. (1985) found a decrease in the absolute number of CD4+ cells over time in HIV-

infected hemophiliacs for whom a time of seroconversion (development of detectable antibodies to

HIV) could be determined. In further studies, Eyster et al. (1987) and Eyster et al. (1989) found that a

low CD4+ count had a high sensitivity and high predictive value for the development of the acquired

immunodeficiency syndrome (AIDS). These authors also defined a normal range of CD4+ cell counts

for uninfected individuals of 500 - 1100 cells/mm3 (cf. their Figure 2). A study by Devash et al. (1990)

used 464- 1364 cells/mm 3 as normal levels (cf. their Table 2). Volberding et al. (1990) used a value of

CD4+ count < 500 at study entry as an eligibility criterion for patient selection in a randomized clinical
trial for zidovudine (formerly AZT) involving 1338 subjects. One measure of the clinical effectiveness

of zidovudine in this study was an observed increase in the numbers of CD4+ cells in the treated group

relative to the control group, in which they observed an average decrease of 16 CD4+ cells/year. Phair

et al. (1990) found that CD4+ counts < 200 greatly increased the risk of an AIDS-related disease

(Pneumocystis carinii pneumonia, or PCP) involving 1665 HIV-infected subjects. For additional results

on relationships between PCP risk and prophylaxis, HIV infection and CD4+ cell count, see also the

Centers for Disease Control (1989), Masur et al. (1989), Leibovitz et al. (1990) and Leoung et al.

(1990). For similar uses of CD4+ counts as eligibility criteria and seconda y measures, see Fischl et

al. (1990) and Collier et al. (1990).

Taylor et al. (1989) provided an analysis of the statistical effectiveness of various functions of

lymphocyte counts. These authors noted a high degree of within-person variability in these counts

regardless of their functional representation. They also noted that the ratio of CD4+ cells to the

total number of lymphocytes, when available, may have slightly better prognostic significance than the

absolute number, due to its slightly lower variability within individuals. In a further study of eight

different biological markers, Fahey et al. (1990) concluded that progression to AIDS was predicted

most acctately by the level of CD4+ cells (in absolute number or as a ratio) in combination with two

serologic measurements.
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Although CD4+ cell count has been well established as an important clinical marker in studies

of the progression of HIV infection, further understanding of its behavior from seroconversion to the

onset of AIDS is required for its use in analyses of the efficacies of medical interventions, in patient

counseling, palliative care and AIDS hospice studies, and in the design and analysis of clinical trials

for anti-HIV therapies. For instance, in counseling an asymptomatic HIV-infected individual who, on

the basis of a single CD4+ measurement between 200 and 500, is found to be in a high-risk category

for further progression towards clinical AIDS or of contracting PCP, it would be extremely useful to

know how long it may take for the CD4+ cell count for this individual to drop below 200, or to below

100, for then the onset of AIDS may be much closer. (Obtaining expected time of death from AIDS,

however, is a very different matter and is not dealt with in this paper.)

For many of the motivating purposes given at the beginning of the preceding paragraph there

remain clear needs for proposing and analyzing useful and adequate statistical models for the stochastic

processes generating observed CD4+ cell counts from the time of infection with HIV onwards. To

these ends, and due to the availability of much prior information on the behavior of CD4+ cell counts

during this time interval, we have chosen to use a family of parametric growth-curve models in a fully

Bayesian analysis of repeated CD4+ counts for asymptomatic HIV-infected individuals. We describe

our particular models and prior constructions in the next section. Bayesian analyses of linear growth-

curves have been given previously by Geisser (1970), Lee and Geisser (1972), Fearn (1975) and Rao

(1987, Section 2, as well as references therein), among others (see also Cox and Solomon, 1986, for

several alternate parametric frequentist approaches). Anticipating problems of regression to the mean in

repeated-measures studies, these models include individual level random effects that allow for random

deviations of an individual's trajectory from the expected trajectory for the population to which the

individual belongs. By allowing for random effects, such as individual random intercepts and individual

random slopes, these models simplify the specification of the dependence structure among the serial

observations when compared with more classical multivariate approaches. This feature of the parametric

growth-curve models is particularly attractive in the present context due to the high variability of CD4+

counts both within and between individuals and the relatively small numbers of repeated measurements

available for each subject compared to the large number of subjects available.

In addition to problems of high variability and limitations due to dealing only with large numbers

of short time series, certain estimators of mean CD4+ counts and of changes in these counts over

time can be seriously biased. Subjects are often available for study only long after they have become
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infected. Brookmeyer and Gail (1987) have pointed out the need to accommodate the differing and

typically unknown times between infection and study entry when estimating the effects of covariates

on the risk of disease using prevalent cohorts for new diseases such as AIDS. These authors label this

potential for bias "onset confounding," and state (p. 745) that no reliable inferences can be drawn from

prevalent cohorts if onset confounding is present. This disappointing conclusion is certainly valid if no

external source of data is available for estimating the distribution of the potential biasing factor. De

Gruttola et al. (1990) have conducted a complete-case analysis of repeated CD4+ counts obtained by

the San Francisco Men's Health Study (SFMHS) for 201 HIV-infected men sampled from a high-risk

group, each subject observed at five six-month intervals beginning in 1984. These authors addressed the

problem of bias from onset confounding by using an external estimate of the infection-time distribution

calculated by Bacchetti and Moss (1989).

This paper presents a careful Bayesian analysis of the SFMHS data using prior distributions

developed from previously reported similar studies. We contribute to the understanding of CD4+ cell

count progression by generalizing the models and results given by De Gruttola et al. (1990) in several

important and essential ways, as described in the next section. The SFMHS data we have available for

our study consist of up to five repeated measurements of CD4+ counts in blood drawn at six-month

intervals beginning in 1984 for 331 male subjects sampled from contiguous neighborhoods in San

Francisco. All subjects have been infected with HIV for unknown periods of time. As is customary,

we take infection time to be the time of seroconversion. The small group of 27 individuals who

seroconverted after study entry were excluded from the analysis. For each subject we also have available

his age at study entry (in years) and his self-reported sexual preference (homosexual or bisexual). The

small number of men in neither of these two sexual preference categories were also excluded from

the analysis.

3. Model specifications

In this section we first note the novel features of our longitudinal model for CD4+ cell counts. Since our

approach is fully hierarchical Bayesian, we provide detail on both its likelihood and prior specifications.

In particular we elucidate the nature of the information and considerations that give rise to the latter. We

employ the Gibbs sampler for hierarchical Bayes modeling (see Gelfand and Smith, 1990; Gelfand et

al., 1990, for details) to obtain desired marginal posterior distributions. The Gibbs sampling approach is

attractive in that it is a computational technique that can readily handle our very high-dimensional model
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with more than 2,000 parameters. Complete conditional distributions required for the Gibbs sampling

technology are also presented. Finally, we discuss the problem of inverse prediction, i.e. within the

Bayesian framework how does one predict time to reach a pre-specified CD4+ cell count?

3.1. Model features

We propose a longitudinal model for the CD4+ cell counts for the subjects in the San Francisco Men's

Health Study that incorporates the following features:

(i) a growth curve for the counts that is nonlinear over time. In fact we employ a piecewise-linear

curve of two pieces motivated by the work of Lang et al. (1989) and Eyster et al. (1989); see

also Masur, et al. (198K). These studies suggest a rather slow decline in CD4+ counts in the early

years post-seroconversion, followed by a more precipitous decline during the few years prior to

diagnosis of AIDS;

(ii) repeated measurements on individuals resulting in incomplete structure due to varying numbers

of measurements (at least one and at most five) per individual. Dependence between individual

measurements is captured through individual level random effects;

(iii) error structure that is assumed normal but with nonhomogeneous variances. That is, given the

random effects we assume that the individual level errors are independent Gaussian but avoid the

implausible assumption of a common variance shared by all subjects;

(iv) inclusion of covariate effects for sexual preference (self-reported homosexual, bisexual) and age (in

years). Brookmeyer and Goedert (1989) demonstrated dependence between a binary indicator for age

(either < 20 or > 20 years) and CD4+ count in their study of a hemophiliac cohort. We study this

dependence further by treating age as a continuous covariate. Were additional covariates available,

particularly ones reflecting individual comorbidities, we would have included them as well;

(v) an errors-in-variables component to adjust for unknown random infection times prior to study entry

and data collection in 1984.

Our model, which we detail in the following subsection, can be given in a general form which,

by virtue of accommodating nonlinearity, incomplete and unbalanced measurements, nonhomogeneous

errors and errors-in-variables, extends the setting provided by Lange and Laird (1989). Fully Bayesian

analysis for this class of models is straightforward though computationally demanding, following the

development of sections 3.2-3.5.
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3.2. Model detail and notation

Let 1`0 be the (possibly unobserved) CD4+ cell count for the ith subject at the jth sampling period,

z = 1 .... ,n;j = 0, 1,2,3,4. The five individual samples were taken semi-annually thus spanning a

total of two years. These times are denoted by Z, measured in years, i.e., ZO = 0,..., Z4 = 2.0. For

many subjects in the data set a CD4+ cell count is missing for at least one time period.

Since we model only those subjects who seroconverted prior to Zo, each individual is assumed to

have a random unknown offset ri which is the time from seroconversion to the start of the study. Hence

for the ith subject the actual time from seroconversion to the jth sampling period is Z*. = Z 3 + ri.

Modeling an explanatory variable in this fashion is typically referred to as an errors-in-variables

approach. However, here the ri are not assumed to be random errors about zero; in fact, ri > 0

with probability one.

At the individual level, suppose that a piecewise linear growth curve with two pieces describes

expected CD4+ cell counts over time. Figure I provides an illustration. The first line segment, 77oi+7v1iZ,

shows slow decline in expected CD4+ cell count for smaller Z. The second line segment, 712i + 773iZ,

shows more rapid decline for larger Z, after some unknown time point ti, presaging a diagnosis of

AIDS within a few years. Lang et al. (1989, Figure 1, page 66) suggest that such ovurall behavior of

CD4+ cell counts can be expected to begin at roughly six months after seroconversion.

Since the line segments agree at ti, there are, in fact, only three distinct parameters. We simplify

notation by letting A, = t1i - 773i, hence Ati = 172i - ?10i, and thus write

Yi = No, + Miz;- -Ai (Z:J - t,)+ + .,, (1)
ind

where c+ = max(c,0). In (1) the ij ',- X (0, a?) independent of the random 770i, 77i and Ai, which

are assumed independent of each other as well. We model 770i, 71ki and Ai as follows:

770, = aN + a0a, + aosb, + 30o;

771. = a+ a, + •Sb, + 0i,; (2)

Ai = aO + a a, + 0tb, " /2i,"

The nine as in (2) denote population effects, while the three 3s denote individual level effects. Thus

with ri,t, and at there are six individual parameters for each subject. For our sample of n = 331

subjects we have a total of 6(331) + 9 = 1995 parameters, compared with 1436 data points.

The reader may be troubled by a model involving 1995 parameters with only 1436 data points

and perhaps be inclined to conclude that the model will "swamp" the data and drive conclusions. In
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fact, there are only 9 population level parameters with the remaining individual level parameters of

lesser interest. Moreover, the exchangeability assumption in our hierarchical Bayes model (see section

3.3) is its crucial aspect. Exchangeability enables one to employ information from the entire collection

of subjects to strengthen the inference for any individual subject. (This "borrowing strength" idea is

implicit in the construction of "shrinkage estimators" which pull the individual level estimates toward

a population level estimate.) We understand any individual's growth curve better (at a micro-level)

because of the longitudinal data gathered from other similar subjects. We can also then infer average

or population level growth curve behavior effectively (at a macro-level) by appropriate aggregation.

Each vector O3i = (03o0, "31,132,)T is assumed, as is customary, to be normally distributed, i.e.
3ii K. (0, V), V unknown. The a',,p - 0, 1, 2, denote population baseline effects for intercept, slope

A

and change in slope respectively. With ai denoting the age (in years) of the ith subject, the ap, p = 0,1,2,

scaled age effects that adjust respective baseline effects. Similarly, with bi denoting sexual preference

(bi = 0 for self-reported homose:ual, bi = 1 for self-reported bisexual), the as p = 0,1,2, provide

sexual preference effects that also adjust respective baseline effects.

It is easier to work with a model involving only the observed counts; hence we alter our notation

slightly. If the ith subject is observed on si occasions at times Z',J = 1 .... ,si, {Z?,...,Za'} C

{0, 0.5, 1.0, 1.5, 2.0}, let Y9 denote the associated vector of observed CD4+ cell counts. Furthermore

let YO denote the concatenated vector of all observed counts for all subjects. In addition, let

0 0  0
[o ao [C A n s a

a 0 a , ,A as221. 2.]
We condense notation further by letting a be the 9 x 1 concatenated vector of these baseline and
covariate-specific mean effects. Finally, let d, denote the collection of all for, a the collection of all

oer the collection of all ri and t the collection of all ti.

T'hus for all n subjects the conditional likelihood (given (3) becomes
n s,

S(a, 0, ort; Y O) J[ (l. P,,, (3)

where pl, is the righthand side of (1) apart from eii (We use Ar(al Ja2, a3) to indicate that the variable

a, is a Gaussian random variable with mean a, and variance a3, and employ similar notation for the

other distributions specified.) The 13i are assumed i.i.d., so their joint distribution is

II (Opage V). (4)
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3.3. Prior specification

We adopt a Bayesian analysis of the model given by (1)-(4) for several reasons. First, classical analysis

for such an unbalanced and incomplete nonlinear random-effects model with nonhomogeneous variances

is virtually impossible to carry out exactly, while analysis based on asymptotic theory seems unjustifiable

in view of the small number of repeated measurements per subject. Second, just as a frequentist assumes

the 3, exchangeable it seems plausible to think of the oa , ri and ti exchangeable as well and to take

advantage of this in the modeling process. Third, several previous studies provide substantial prior

information with regard to the parameters a', r, and t, that ought to be used. Fourth, consider the

remaining parameters /i, aA, aS and al. While we have no direct prior information for these unknowns,

we have indirect information pertinent to their prior specification arising from natural centering along

with suitable scaling based on the known ranges of the Yi,I ai and bi. Again, use of such information

enhances the modeling process. To address concerns about prior sensitivity we employ a more vague

prior specification for these parameters; discussion of the data analysis in section 4 shows that our

findings are robust to such changes. Fifth, recent advances in methodology for Bayesian computations

enable reasonably straightforward implementation of a fully Bayesian analysis for such a challenging

high-dimensional model.

Our prior information is drawn primarily from the work of Bacchetti and Moss (1989) and Lang

et al. (1989). The former provides discussion useful for modeling the ri and the ti while the latter is

informative for modeling a and the ti. Recalling the definition of ri (see Figure 1 and accompanying

discussion) we seek information on the distribution of seroconversion times for the subjects in our

study. Bacchetti and Moss (1989) provided an estimate of this distribution developed from a clinical

cohort study at the San Francisco General Hospital. This distribution seems an appropriate prior for

the subjects in our data set as they, too, are a group of San Francisco males. The Bacchetti and Moss

estimate begins at January 1978. Since we consider only those subjects who have already seroconverted

by the start of data collection in 1984, we truncate this distribution at six years. Rather than assuming

an arbitrary parametric form for this distribution we instead divide this roughly six-year span into twelve

intervals, each of length six months, and label each interval by its midpoint. Thus we assume the ri. are

i.i.d. following a twelve-point distribution taking on values 1/4,3/4,...,23/4. Adapting the Bacchetti

and Moss estimate we obtain the prior distribution for the 7', shown in Table 1. As an aside, the ensuing

development shows that refinement of this prior to more than twelve points can be handled easily. In

fact, initially we used a six-point prior which yielded findings very similar to those reported in the next
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section under the twelve-point distribution given here.

Next, recall the definition of t, (see Figure 1 and accompanying discussion). By definition, t, is a

time point within the AIDS latency (equivalently incubation) period, this period being defined as the time

from seroconversion to diagnosis of AIDS. Several studies have investigated this latency distribution,

taking parametric, semi-parametric and nonparametric approaches, including Medley et al. (1987), Lui et

al. (1988), Kalbfleisch and Lawless (1988), Bacchetti and Moss (1989), Longini et al. (1989), Lagakos

and De Gruttola t1989) and Lifson et al. (1989). All of these studies are based on at most eleven years

of data and they vary widely in their predictions. They suggest median latency times of seven to ten

years and that roughly 60 to 80% of latencies will occur by the end -f the tenth year. According to

Lang et al. (1989), t, occurs approximately two to three years prior to an AIDS diagnosis. See also

Figure 4 of Masur et al. (1989), which exhibits a similar pattern of progression before development of

PCP. Thus we consider two choices of discrete prior distribution for t, in years, corresponding to the

20% and 40% collapsed tails as shown in Table 2. These distributions hlave medians at five and six

years respectively. As with the ri, the t, will be assumed i.i.d.

For a, a nine-dimensional multivariate normal prior was selected. We require specification of its

prior mean, which we denote by the 9 x 1 vector c. Previous studies provide information for the mean

of the prior baseline effects, but not for prior means on age and sexual preference effects, which we

thus set to zero. We assume the prior variance-covariance matrix has the block-diagonal form

Do 0 0

D= 0 DA 0I ]

.0 0 Ds.

implying that covariate effects for age and sexual preference are independent of the baseline effects

and of each other.

According to the study of Lang et al. (1989), the mean number of C -11s was 716 at six

months after seroconversiw (the time after which we propose the model in Figure 1). We take this

value as the mean for the baseline intercept al. This study also reports a decline in mean CD4+

count of 42 cells per six month period in the early HTV seropositive stages. Thus we take -84 as the

mean for the first line segment (pre-ti) slope a' (since Z is measured in years). Similarly, a decline

in mean CD4+ count from 430 to 190 is reported in the eighteen months prior to AIDS diagnosis.

Thus the mean slope for the second (post-ti) line segment is taken to be -160, yielding a mean for

the change in slope a* to be 76. Lang et al. (1989) also provided standard errors associated with
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mean CD4+ count at various post-seroconversion time points. The largest of these is 69, so to be

conservative we chose 70 as the standard error for a'. We approximate the variance of a slope by

"var ((Y2' - 17) / (t'. -t 1 )) t (t - t I ) -2 (var (Io) + var ("1`)), where t, and t2 are two time points

on the same line segment and Y01 and Yo are corresponding observed CD4+ cell counts at these time

points. For a', using the standard errors from Lang et al. (1989) of 15 and 17, three years apart,

the approximation is ((15)2 + (17)2)/(3)2. Similarly, the variance of the post-t1 line segment slope

is approximated using standard errors 28 and 25, eighteen months apart, yielding the approximation

((28)2 + (25)2)/(1.5)2. The variance for a* is approximated by the sum of these two approximations.

It seems that the baseline ao should be correlated. For instance, if al were decreased we

would expect that ac would increase to yield a line segment that continues to agree roughly with

our prior information at particular time points. Sim-Azx arguments apply for a* and ac and for

ag and a'. For simplicity we assume a priori that corr(a&, ao) = -0.5,corr(a*,a') = 0.5, and

corr(ag, aO) = -0.5. With these correlation approximations, the prior variance-covariance matrix DO

for a' is thus determined.

Turning to the remaining parameters, we take prior specifications consistent with known ranges.

Interpreting, for example, as as an adjustment to a* and recalling the scales for a' from the preceding

paragraph, we suggest that plausible standard errors for s, Is and as might be 100, 25 and 25

respectively. Assuming correlation structure as in DO thus determines the variance-covariance matrix

Ds for as. Similar reasoning leads to a variance-covariance matrix DA for aA, but since aA enters (1)

multiplied by age we rescale these stndard errors by the average age of the subjects which is 36.1 (36.3

if homosexual, 35.1 if bisexual). Hence prior standard errors for as, cs and as are 100/36.1,25/36.1

and 25/36.1 respectively.

The a• are assumed i.i.d. from an inverse gamma (11) distribution having mean p = standard

error ar = (200)2. The inverse gamma distribution is parametrized customarily by Al and A2, its shape

and scale parameters respectively, from which one obtains/p = 1/(A2(A1 - 1)) and a.2 = 1/(A2(, 1 -

1)'(,i - 2)). Finally, for V we choose an inverse Wishart distribution, i.e. V-1 -, W((pA)-I,p).

Recalling that V is the common variance-covariance matrix of the individual random effects, since A

is roughly its prior mean we take A diagonal with diagonal elements (25)2, (6)2 and (6)2 respectively.

We make this prior rather vague by choosing a somewhat small precision of p = 2. We note in passing

that if there was prior evidence to suggest that different population subgroups had different Vs, we

could have easily included that possibility at this stage.
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With the preceding priors, and assuming the 7d,, c. ri and ti independent of each other and a, our

overall model becomes

n

C (a, 3, or2, , t; YO) *-A'(a1c, D) x' (03i10, V).
i=1 (5)

t=I ~ ~

Numerical values in (5) for c, D, p and A, and the distributions p(ri), p(t,) and IQ(aoJIi, A2 ) have been

specified in the preceding discussion. The dependence structure associated with (5) is captured succinctly

in the directed graph shown in Figure 2. This graph provides a visual descriptc-,n of the structure of our

problem. The "-- "s indicate that all parameters (save V) are connected to one another directly through

the observed data. At each node (parameter) of this graph sits a "complete conditional distribution"

(described in the next section). The "Gibbs sampler" idea (see Geman and Geman, 1984) is to sample

from Markovian updates of these distributions in an iterative fashion resulting in random states for the

graph whose joint distribution converges to the exact joint distribution of its nodes.

3.4. Complete conditional distributions

The Gibbs sampler offers a straightforward approach for obtaining marginal posterior distributions for

the parameters in hierarchical Bayes models (see Gelfand and Smith, 1990; Gelfand et al., 1990). In the

present case, the parameters of primary interest are the population parameters a. We may have some

interest in summarizing individual level parameters as well.

The Gibbs sampler is an iterative Markovian updating scheme. We do not review details here,

except that its implementation requires sampling from so-called complete conditional distributions, as

noted in the previous subsection. For the remainder of this subsection we develop these distributions.

Sampling is conducted with m parallel and independent replications each taken to r iterations. Desired

marginal density estimates and features of these densities are obtained as Monte Carlo integrations of

the corresponding complete conditional densities and features using the m replicates. Choice of m

determines how close our marginal posterior density estimate is to the exact density at the rth iteration,

while choice of r determines how close the latter density is to the actual marginal posterior density.

Settings for m and r to achieve smooth converged estimates vary with the application. In the present

situation we used m = 500 and r = 25. We remind the reader that each iteration for each replication

required the generation of 2001 variates. Thus in total more than 2.5 x 107 variates were generated, with
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more than 106 variates retained at the end of an iteratio,.. Run time for all sampling and summaries on

a single DEC station 3100 was roughly four hours wall clock time.

In order to make notation more compact at the individual level, let wij = 1 Zj -(Z'* - ti,
w, = (wwT ... )T and

X= [Wi I aiWi I bWi].

Then we may write

=i~ w,1 (a' + a A+ bia S + +3 ) +

and

Y9 = Xia+Wioi + Ei, (6)

where ej = (fit ei,, Employing the normal-normal conjugacy between likelihood and prior

(as in Lindley and Smith, 1972) we have the following complete conditional distributions arising from

(6):

for a:

N.• +D-1) +"i, +D-1e 7? + +D-1j
Af -

where

R~a) Y9 - wdfh;

and for the /O,:

[ (WTW v,' w V(w + v-

where RýO) = Y'?- xi,.
1 -

For the a2 and for V we again take advantage of conjugacy between likelihood and prior to obtain:

for the o2:

1Q + , (+ + ,1R1. .1D1]

where

R - Y' - X•a - Wifli and 11.112 = (.)T
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and for V- 1 :

W[Z 3i)' + pA n + p.

Sampling from a Wishart distribution is easily carried out using the method of Odel and Feiveson (1966).

Last, the ri and ti, whose distributions do not enjoy conjugacy with the likelihood, are sampled

from discrete twelve- and eight-point distributions respectively. (We label the collapsed upper tail for

t, by the value 8.) In particular, holding all other variables fixed, suppose we consider the exponent of

in the expression l' " Ltj, 0,), from (3), as a function of ri alone. Call this function -g(rj).

Then the complete conditional distribution for r" is

e-gtr-)p (i) 1 23
SE'k = 4k 'T4

where p(r) is as given in the previous section. Similarly, consider the exponent of e as a function of

ti alone. Call this function -h(ti). Then the complete conditional distribution for ti is

e-h(t,)p(ti)

eh(t) tk = 1,.. .,8,
th

where two choices for p(t) were given in the previous section.

3.5. Inverse prediction

One of the determinants of a diagnosis of AIDS or of increased risk of contracting PCP is whether

CD4+ cell count has dropped below 200, as cited in section 2. An important question to ask, therefore,

is what is the distribution of the time until CD4+ count reaches 200? This is essentially equivalent to

asking what is the unconditional latency distribution for AIDS. The method proposed in this section

will be employed in the following section to develop such a distribution for self-reported homosexual

and bisexual males. Critical values for low CD4+ count other than 200 can of course be used. The

resulting estimated distributions emerge as a Bayesian synthesis of previous such estimates (see section

3.3) and the SFMHS data set.

In its simplest form the problem is one of inverse regression (see, for example, Draper and Smith,

1980). Rather than predicting CD4+ counts at a given time we seek to invert this relationship to provide

a prediction of time to a specified CD4+ count. The ensuing discussion provides a Bayesian solution to

the inverse regression problem for the model in (1)-(4). The distributions we require are for the entire
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population of self-reported homosexual males and for the entire population of self-reported bisexual

males. Thus we set individual level effects 03, = 0 and set bi = 0 or 1 accordingly. We seek each

estimated distribution for an average subject and thus take ai equal to the average age in each of the

two samples respectively. Other settings for ai could be used as well. Dropping the subscripts in our

model we can thus write the mean CD4+ count E(Y0) at time Zo as

E (Yo) = Po + P1 Zo -P2 (Zo - t), (7)

where

po =a a+a+aSb;pi =p + aa+ aSb; and +2 =a+ a + aSb,

as in (2) but at the population level. Assuming p1 < 0, p2 > 0, inversion of relationship (7) produces

the desired time for a specified E(Yo). In particular

f (E (Yo) - p0o) /p if E (Ye) > p0 + pit; (8)
(E(Yo)-po -P202t)/(pI -/P2) ifE(Yo) < po+ pit.

With a and b specified, for a given E(Yo) each of the m independent Gibbs replicates may be substituted

into (8) producing a collection fo} .=L The set of Z0k can be used to construct a kernel density

estimate of Z0 . This estimate produces the desired time distribution.

In our case and as in most situations, however, m = 500 is insufficient to produce a satisfying

kernel density estimate. But, recalling the discussion in section 3.4, to increase m substantially will

increase dramatically the amount of additional variate generation. Moreover as observed by Gelfand

and Smith (1990) we would do better to utilize the known structure. in the model to create a density

estimate. That is, we can calculate the complete conditional distribution of Z0 viewed as a one-to-one

function of ck with all other parameters fixed, after which the desired density estimate is obtained as

a Monte Carlo integration of this distribution with respect to the m Gibbs replicates. Now a sample

size of m = 500 will be more than adequate.

More precisely, with p' = p0 - aO we have

-(a0 +p' - E (Yo))/lp 1 if a> < E(Yo)- po- pIt, i.e. if Zo < t;
Z0= (aO + p'0 E (Yo) + P2t) / (PIl - P2) if a* > E (Y,) -/ -o pit, i.e. if Z0 > t.

Recalling that the complete conditional distribution for aO is normal, denoted as J (a0a/pa, for

simplicity, the complete conditional distribution for Zo will be
A.(v (Zoi- + - (Yo)) 1/p) 1(-.,t(9

+A(" (Zo I (p,.; + l - E (Yo) + •.t) / (p I - PJ2),.a/ (P I - P2) ) l(~op) (Zo)
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where 1.(.) is an indicator function. The Gibbs replicates determine the parameters of these normal

distributions from which the Monte Carlo integration produces a density estimate that is a mixture of

the forms in (9).

An alternate approach to solve the Bayesian inverse regression problem is to include a fictitious

subject in the sample for whom the only information is the value of a, of b and a particular CD4+ count

Yo. Treating the corresponding ZO as an unknown model parameter, we could devise a prior for Z0 .

Then implementing the Gibbs sampler as in section 3.4 with the inclusion of this additional subject and

with the complete conditional distribution of Z0 leads to a marginal posterior density estimate for Z0 .

The difference between the two approaches is that in one case the specified CD4+ count is treated as a

mean (a function of model parameters) while in the other it is treated as a random data point.

4. Results

In this section we present and discuss descriptions of various features of estimated posterior distributions

and an investigation of the sensitivity of our conclusions to our prior specifications. We also include a

comparison with a previous analysis of a similar data set.

4.1. Posterior distributions for population and individual level parameters

As a starting point we use the lighter-tailed prior pl(t) for the ti, with the remaining prior structure

as discussed previously. Figure 3 shows the estimated posterior densities obtained for the components

of baseline effects a°, age effects aA and sexual preference effects cs. The three rows in Figure 3

are for these three effects, and the three columns are for each of their three components: intercept,

pre-change point slope znd decrease in slope after the change point. These estimated densities were

obtained by mixing the corresponding complete conditional distributions from m = 500 independent

parallel replications of the Gibbs sampler, each taken to r = 25 iterations as mentioned previously.

Table 3 is a numerical summary of Figure 3, and gives point estimates in the form of posterior modes

and interval estimates in the form of 95% equal-tail credible sets for these population parameters.

The point estimate suggested for the baseline effects is &0 = (861.0, -87.9,52.0), confirming the

basic shape for CD4+ cell decline pictured in Figure 1. Credible sets for all three baseline parameters

do not include zero, although the set for a* nearly does, due in part to the much higher variability

in its prior. Four of the six credible sets for the remaining cA and .s parameters contain the prior

mean zero. Exceptions are an age effect on slope and a sexual preference effect on intercept. The
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indicated age-slope effect suggests that the rate of CD4+ cell decline is more rapid for older

patients. For instance, the modalvalue for the pre-ti slope for a 35-year-old self-reported homosexual

subject would be & + 35A = -114.6. The indicated sexual preference -itercept effect suggests

that those who identified themselves as bisexual upon study entry had a higher overall CD4+ cell count

at seroconversion than self-reported homosexuals at seroconversion. An estimate of this increase is

given by &S = 113.0. The lower estimated intercept for the homosexual group may reflect effects of

comorbidities not explicitly measured in the study. This result suggests a potential difference in the

progression from seroconversion to AIDS between self-reported homosexuals and bisexuals; we discuss

this point further at the end of this section.

Pearson correlations between population parameters may be obtained from the replicates generated

by the Gibbs sampler. Doing this we obtain Table 4. The correlations in our prior structure had exactly

the signs exhibited in this table and magnitudes of 0.5. The posterior correlation between as and as is

the only one that has moved very far away from its prior value. We did compute estimated bivariate

posterior distributions for some of the a pairs by mixing the appropriate bivariate normal complete

conditional densities (not shown), but found that these displays added little to our understanding.

We summarize individual level parameters in Figure 4 by showing the three possible bivariate

scatterplots of intercepts and slopes among the floi,,/li, and 832i. The plotted points are estimated

posterior means computed as simple averages of the appropriate Gibbs samples for each of the 331

individuals in the study. The range of intersubject variability is large for the intercepts (roughly 2200

units, or 2.5 times &0), very large for the pre-ti slopes (roughly 750 units, or 8.5 times a 1), and

enormous for the post-ti changes in slope (roughly 500,000 units, or 10,000 times &2). It is somewhat

surprising that our procedure was able to detect any population level signal given the vagueness

of our prior and the presence of such noise. The extreme variability in the #2i seems due to the

little available information to estimate features of the post-change point portion of the curve with

at most five observations available per subject. The change point seems to occur very late in the

measurement period (see findings for the ti and -ri below), making post-change point slope estimation

difficult or nearly impossible on an individual basis without additional data at subsequent time points.

Compounding the problem are censoring mechanisms at later time points for subjects who, for reasons

unrecorded, discontinued their visits. The scatterplots show a rather high degree of association between

the Ooi and the /31i, as subjects with higher than average intercepts are associated with more steeply

decreasing curves. No significant correlation is evident between the /38i and either the 30i or /31i, no
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doubt due mainly to the general difficulty in measuring the post-ti individual slopes.

Figure 5 provides histograms of the estimated posterior means for the remaining individual level

parameters ri, ti, and ai, i -= 1.... , n. As with the 3i, these estimates are simple averages of the

corresponding m = 500 iterates. It is this averaging that produces rather continuous estimated posteriors

for the r, and ti even though both had discrete priors. The F, histogram indicates a much more even

distribution of times since seroconversion than was present in the rather peaked prior distribution taken

from Bachetti and Moss (1989); the data have revised our prior to suggest a more uniform distribution

of seroconversion times for the subjects in our study. The picture for ti, on the other hand, is less

diffuse than the prior and is skewed to the left. For most subjects, the CD4+ cell level seems to

begin to decrease more steeply between 5 and 5.5 years after seroconversion. However, there is also a

significant minority of subjects for whom the switch to the second regime occurs much sooner, perhaps

as early as 3 years after seroconversion. Finally, the histogram of 6i values shows that most subjects

have estimated values much less than the prior mean of 200, with only a very few ai estimated to

exceed 300. However, the presence of a few very large &i values suggests that our decision to assume

heterogeneous variances was worthwhile.

The modal growth curves for self-reported homosexual and for self-reported bisexual subjects ane

shown in Figure 6, with change points at the respective estimated posterior medians. We see that the

population level curve for the former group lies below that of the latter and has a larger decrease in

slope. We also show boxplots of the ti for each group. Comparing these boxplots, the self-reported

homosexual group has a more dispersed distribution, exhibiting considerable skewness to the left with

median roughly three months later than that of the more homogeneous self-reported bisexual group.

Thus it turns out that most of the subjects with relatively early estimated change points are found in

the self-reported homosexual group.

Graphical displays of the results of applying our Bayesian solution for the inverse prediction problem

oitlined in section 3.5 are provided in Figure 7. These two curves are the estimated posterior distribution

of the mean number of years from seroconversion to a CD4+ count of 200 for homosexuals and bisexuals

of average age, 36.3 and 35.1 years respectively at study entry. In mixing the densities of the form

given in (9) we took t = E(ti) = 5.1, the prior mean under pl(t). Our analysis suggests a slightly

higher mean time from seroconversion to AIDS for self-reported bisexual subjects (a point estimate

of 6.3 years vs. 6.1 years) and consistent with our finding that progression patterns for self-reported

bisexuals had higher estimated CD4+ counts at seroconversion. There is also a bit more variability
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in the picture for this group, suggested for instance by comparing the credible sets. This is probably

due to a smaller sample size (67 bisexual vs. 264 homosexual). Similar inverse prediction analysis

could of course be conducted if one desired comparisons of subjects at ages other than group-specific

average ages at study entry.

4.2. Prior sensitivity and a brief comparison with a previous analysis

To examine the robustness of our results we considered perturbations of key elements in our prior

specification whose elicitation was less precise. This is an important issue in any Bayesian analysis,

and especially so in this problem where intersubject variability abounds. (It could have turned out
that the data contained essentially no information about the overall population parameters, and that our

prior distributions were driving results completely.) We did not perturb the prior on 7i, nor the prior on
a* because of fairly accurate external information as cited previously. We also did not perturb the

deliberately vague prior specification for the al.

We were concerned, however, about the potential impact of increased levels of uncertainty in

the prior variance-covariance matrices for the population mean effects aA and as as well as for the

A3,. Unanticipated additional uncertainty could have led to all components of a A, aS or both being

statistically indistinguishable from zero. To decrease precision we replaced DA by 4DA, Ds by 4DS
and A by 4A. This amounted to doubling the uncertainty in each of these prior components. As

expected, these modifications did affect the related posterior distributions, but no dramatic changes

were observed. In particular, the components of aA and as that emerged as significantly different from

zero in the original analysis, aA and as, continued to have this property: alternate 95% credible sets

became (-1.42, -0.25) and (47.37,232.13) respectively. In fact, both of the related point estimates

actually moved further away from zero ( &A = -0.79 and &S = 134.39). For the components of the Pi
the alternate scatterplots (not shown) had an appearance very similar to those in Figure 4, over roughly

the same range for the 630i and 31i and about twice the range (106 units) for the #2i. Histograms for the

Fi, and a did not change appreciably, nor did the inverse prediction posterior for the self-reported

homosexual group. The corresponding distribution for self-reported bisexuals did widen somewhat from

that given in Figure 7. The alternate 95% credible set was roughly 0.5 years wider, but the point estimate

was essentially unchanged at 6.27. Overall, we conclude that these changes in prior specifications do

not bring about substantial changes in our results.
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Next, since the prior for ti was built piecemeal from several sources we considered the changes

brought about by switching to the heavier-tailed prior p2(t) for the ti. Not surprisingly, this led to

a histogram of F, values having a higher mode (up to roughly 5.9 years) but the same left-skewed

appearance as in Figure 5b, the range of values now going from 3.5 to 6.5. A more interesting result

is that the alternate credible set for ao of (-0.07,5.00) came very close to excluding zero. The

corresponding interval in Figure 3d does as well, suggesting an age-related contribution to the overall

model intercept.

We also analyzed the model with both of the above perturbations to the prior in place. The changes

observed were essentially the logical union of those described in the preceeding two paragraphs. In

particular, the population parameters had somewhat more diffuse estimated posteriors, but those that

were significantly different from zero previously remained so. The inverse prediction credible sets were

a bit wider, being up to 1.2 units wider for self-reported homosexuals and about 2.1 units wider for

self-reported bisexuals. Figure 7 lost some of its symmetry for this latter group, showing instead a

heavier upper tail. Finally, the ranges for 30i and 631i were roughly the same as in Figure 4, but the

,32i range became even larger (up to 2.5 x 106). Overall, these analyses show that our results are fairly

robust to imprecision in prior specifications.

Finally, we give a brief comparsion of our work with that of De Gruttola et al. (1990). As

mentioned in section 2, these authors fit a considerably simplified version of our model to a different

portion of the SFMHS data set, excluding all incomplete cases. They fit a random-effects model with

a likelihood similar to that given in (3), but assuming only a simple straight-line growth curve without

a random change point ti. They also did not allow for the age and sexual preference covariates, nor

for nonhomogeneous subject variances o,2. Their decision to conduct only a complete case analysis is

perhaps the most restrictive, as it eliminated almost 40% (130 subjects) of the 331 HIV-positive subjects

available. To calibrate their results for HIV-positive subjects, De Gruttola et al. also included HIV-

negative patients with complete data records in their analysis, setting Zý- = 0, j = 1,..., s, for these

subjects. These authors adopted a parametric empirical Bayes approach to their analysis and hence did

not place priors on a, V or on their common or2 but rather estimated these from the marginal distribution

of the data. They did however assume that the ri represent errors in the Zi,, as have we, and took their

distribution to be a seven-point discrete distribution derived from a coarser version of the infection-

time distribution calculated by Bachetti and Moss (1989). Before fitting their model, De Gruttola et al.

(1990) transformed the Yi• counts to the square root scale in order to stabilize the observational variance
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across individuals. This we did not do, because our assumption of nonhomogeneous variances makes

it unnecessary and because all of our prior information related to the original scale. We have no idea

what form of growth curve would be appropriate on the square root scale.

With all of the above differences in model and data only very rough reconciliation between the

analyses is possible. Using the square root scale De Gruttola et al. obtained an estimated population

intercept of 33.15 and an estimated population slope of -2.13. Since the intercept corresponds to

the square root of population CD4+ count at seroconversion, its square, 1099, may be compared with

estimated intercepts from our study. In particular, these are 939 for a 35 year old (average aged)

self-reported homosexual and 1052 for a self-reported bisexual of the same age. Since dY/dZ =

d\/'Y/dZ + dv/'Y/dY, a slope of -2.13 corresponds to a rate of change at seroconversion of -141 on
the original scale. From Figures 3, 4 and 5, using model values we find a pre-ti slope of -113 and a

post-ti slope of -156 for a 35 year old self-reported homosexual. Similarly, we find a pre-ti slope of

-130 and a post-ti slope of -146 for a 35 year old self-reported bisexual.

5. Conclusions and Discussion

We have conducted a fully Bayesian analysis of the progression of HIV infection using longitudi-

nal CD4+ counts by employing a high-dimensional hierarchical model. Our approach accommodates

individual piecewise-linear growth curves with random unobserved change points, heterogeneous vari-

ances, unbalanced and incomplete data, several population level covariates and unobserved infection

times. These extensions of classical Bayesian or frequentist parametric growth-curve models have been

possible through recent advances in Bayesian computations for high-dimensional models, in particular

stochastic relaxation using the Gibbs sampler. To our knowledge, this sampling-based approach is the

only feasible way to analyze a model involving all of the preceding features. This computationally-

demanding technology has yielded further understanding of the post-infection behavior of CD4+ counts

for the San Francisco Men's Health Study cohort, as summarized in the preceding section. We note in

addition that though certain of our 95% credible sets include zero, directional adjustments, perhaps

using modal values, could be made when reporting point estimates.

Our inferences provide useful additional information for clinicians, AIDS hospice workers, counsel-

lors and health policy experts. As more data become available from this cohort beyond the fifth occasion

of observation we can both validate our model and sharpen our predictions if necessary. Further data

on CD4+ counts may possess richer structure than our present data set: the individual time series may
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be longer and additional population covariates, possibly time-varying, may be available in other studies.

There may also be multivariate outcomes at each occasion, e.g. longitudinal p24 antigen levels and

CD4+ counts together. Under such circumstances several directions for generalization of our modeling
approach suggest themselves, including more general patterns on variance-covariance matrices such as

auto-regressive process models for larger numbers of longer time series, the luxury of fewer paramet-

ric assumptions on the shapes of the individual level curves, and generalizations of the growth-curve

models used here to accommodate multivariate outcomes.
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Table 1. Prior distribution for the unobserved random

infection times. Values for p(-r) in the table are X 10 4 .

r 1/4 3/4 5/4 7/4 9/4 11/4 13/4 15/4 17/4 19/4 21/4 23/4

p('r) 685 1089 1371 1415 1356 1238 1191 959 414 172 55 6

Table 2. Prior distributions for the unobserved random change points.

t 1 2 3 4 5 6 7 >8

pI(t) 0.05 0.1 0.1 0.15 0.15 0.15 0.1 0.2

p2(t) 0.0375 0.075 0.1125 0.1125 0.1125 0.1125 0.075 0.4
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Table 3. Posterior modes and 95% credible sets for the population parameters.

(a) posterior modes

covariate effects intercept pre-changepoint decrease in slope

slope at the changepoint
baseline 861.0 -87.9 52.0

age (in years) 2.2 -0.76 -0.23
sexual preference* 113.0 -17.1 -27.4

(b) 95% credible sets

covariate effects intercept pre-changepoint decrease in slope

slope at the changepoint
baseline (776.2, 950.9) (-102.5, -74.2) (6.1, 89.2)

age (in years) (-0.23, 4.8) (-1.3, -0.28) (-1.5, 0.76)

sexual preference* (34.8, 196.0) (-41.8, 5.5) (-71.7, 14.2)

* self-reported homosexual (coded 0) or bisexual (coded 1) at study entry.

Table 4. Pearson correlations between population parameters.

baseline age sexual preference

Oi a2 aA aA as as

a0 -0.524 -0.377 aA -0.542 -0.367 as -0.809 -0.394
a l  - 0.503 aA - 0.550 as - 0.557
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Figure 1. Piecewise-linear expected individual CD4+

cell counts over time, with unknown change point t,.
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Figure 2. A directed graph for the hierarchical Bayes model.

a (population parameters)

yO (outcome data)
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Figure 3. Estimated posteriors, population parameters
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Figure 4. Scatterplot matrix, components of beta vector
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Figure 5. Histograms of other individual level parameters
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Figure 7. Estimated posteriors, inverse prediction
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